Ovarian Cancer: Contemporary Management & Clinical Trial Endpoint Considerations

Thomas J. Herzog, MD
Paul & Carolyn Flory Professor
Deputy Director, UC Cancer Institute
Vice Chair Quality & Safety, Dept Ob/Gyn
University of Cincinnati
Thomas Herzog, MD
Immunotherapy in Gynecologic Malignancies

Relevant financial relationships in the past twelve months by presenter or spouse/partner.

Other: Scientific AD Board (AZ, Roche, Caris, Clovis, Tesaro)

The speaker will directly disclose the use of products for which are not labeled (e.g., off label use) or if the product is still investigational.
Strategies Targeting Hallmarks of Cancer

Avoiding immune destruction is a hallmark of cancer

Cancer-immunity cycle = immune system recognises, targets and kills cancer cells

Tumors can inhibit the anti-tumour immune response by disrupting the balance of the cancer-immunity cycle via immune checkpoints.

Cancer-Immunity Cycle

1. Release of cancer cell antigens (cancer cell death)
2. Cancer antigen presentation (dendritic cells/ APCs)
3. Priming and activation (APCs & T cells)
4. Trafficking of T cells to tumors (CTLs)
5. Infiltration of T cells into tumors (CTLs, endothelial cells)
6. Recognition of cancer cells by T cells (CTLs, cancer cells)
7. Killing of cancer cells (Immune and cancer cells)
Tregs vs. CD8 T cells

Smyth et al. Immunology and Cell Biology 2017
Cold & Hot immune tumors: Clinical implications

“Non-T cell inflamed” Tumor

CD3 Tumor

“T cell inflamed” Tumor

COLD

HOT

Immunoscore

0 1 2 3 4
OC carries significant levels of mutational load

Red line indicates the threshold for samples with a high mutational burden (13.8 mutations/Mb)

Mb, megabase

Zehir et al. Nat Med 2017
Key studies Establishing Immune Response in OC

<table>
<thead>
<tr>
<th>Reference</th>
<th>Number of patients</th>
<th>Immune cell type</th>
<th>Outcomes</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhang et al.</td>
<td>186</td>
<td>CD3+ TILs</td>
<td>PFS, OS</td>
<td>Presence of TILs positively correlates with PFS, OS</td>
</tr>
<tr>
<td>Mariya et al.</td>
<td>122</td>
<td>CD3+, CD4+, CD8+ TILs</td>
<td>OS</td>
<td>CD8+ TIL presence correlates with platinum response</td>
</tr>
<tr>
<td>The Cancer Genome Atlas</td>
<td>489</td>
<td>Exome, mRNA, miRNA sequencing, somatic copy number analysis</td>
<td>NA</td>
<td>Immunoreactive subset of ovarian cancers identified by mRNA expression of chemokines and receptors</td>
</tr>
<tr>
<td>Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curiel et al.</td>
<td>70</td>
<td>CD4+CD25+FOXP3+ Treg cells in ascites and tumor slices</td>
<td>OS</td>
<td>Tumor recruitment of immunosuppressive Tregs predicts decreased OS</td>
</tr>
<tr>
<td>Sato et al.</td>
<td>117</td>
<td>CD8+ TILs, CD4+TILs, CD4+ CD25+ FOXP3+ Tregs</td>
<td>OS</td>
<td>High CD8 TIL to Treg ratio associated with improved OS</td>
</tr>
<tr>
<td>Hamanishi et al.</td>
<td>70</td>
<td>Tumor cells expressing PD-L1, CD8+ TILs</td>
<td>OS</td>
<td>PD-L1 expression on tumors predicts decreased OS, and CD8 TILs are associated with improved OS</td>
</tr>
</tbody>
</table>

Turner et al. Gynecologic Oncology, 2016
Blockade of PD-1/PD-L1 or CTLA-4 Signaling

Ipilimumab*
Tremelimumab
Nivolumab*
Pembrolizumab*
Atezolizumab*
Avelumab
Durvalumab

* FDA-approved
Checkpoint Inhibition
Immune Checkpoint Inhibitors Overview

<table>
<thead>
<tr>
<th></th>
<th>Ipilimumab<sup>1</sup></th>
<th>Nivolumab<sup>2</sup></th>
<th>Pembrolizumab<sup>3</sup></th>
<th>Avelumab<sup>4</sup></th>
<th>Atezolizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand Name Mfg</td>
<td>BMS</td>
<td>BMS</td>
<td>Merck</td>
<td>Pfizer</td>
<td>Genentech</td>
</tr>
<tr>
<td>Isotype</td>
<td>IgG1</td>
<td>IgG4</td>
<td>IgG4</td>
<td>IgG1</td>
<td>IgG1</td>
</tr>
<tr>
<td>Targets</td>
<td>CTLA-4</td>
<td>PD-1</td>
<td>PD-1</td>
<td>PD-L1</td>
<td>PD-L1</td>
</tr>
<tr>
<td>ADCC</td>
<td>Yes<sup>5</sup></td>
<td>No<sup>6</sup></td>
<td>No/Minimal<sup>7</sup></td>
<td>Yes<sup>8</sup></td>
<td>Yes<sup>8</sup></td>
</tr>
</tbody>
</table>

Ovarian Immune Checkpoint Inhibitors

<table>
<thead>
<tr>
<th></th>
<th>Ipilimumab
¹</th>
<th>Nivolumab
²</th>
<th>Pembrolizumab
³</th>
<th>Avelumab
⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>9</td>
<td>20</td>
<td>26</td>
<td>124</td>
</tr>
<tr>
<td>Patient population</td>
<td>Metastatic ovarian carcinoma</td>
<td>Platinum-resistant, post-taxane</td>
<td>Failure or inability to receive standard Tx; PD-L1+</td>
<td>Recurrent post-platinum</td>
</tr>
<tr>
<td>Prior therapies</td>
<td>NR</td>
<td>≥4: 55%</td>
<td>≥4: 80.8%</td>
<td>≥3: 65.3% (not including adjuvant)</td>
</tr>
<tr>
<td>PD-L1+ prevalence</td>
<td>NR</td>
<td>80% (IC 2/3)</td>
<td>100% (≥1% TC)</td>
<td>77% (≥1% TC)</td>
</tr>
<tr>
<td>Median follow-up</td>
<td>NR</td>
<td>11 months</td>
<td>NR</td>
<td>12.4 months</td>
</tr>
<tr>
<td>TRAE, any</td>
<td>22%</td>
<td>95%</td>
<td>69.2%</td>
<td>66.1%</td>
</tr>
<tr>
<td>TRAE, Gr 3+</td>
<td>NR</td>
<td>40%</td>
<td>3.8%</td>
<td>6.5%</td>
</tr>
<tr>
<td>ORR (95% CI)</td>
<td>NR</td>
<td>15% (3.2-37.9)</td>
<td>11.5% (2.4-30.2)</td>
<td>9.7% (5.1-16.3)</td>
</tr>
<tr>
<td>DCR (95% CI)</td>
<td>NR</td>
<td>45% (23-69)</td>
<td>34.6% (17-56)</td>
<td>54% (45-63)</td>
</tr>
<tr>
<td>mPFS</td>
<td>NR</td>
<td>3.5 months</td>
<td>NR</td>
<td>2.6 months</td>
</tr>
<tr>
<td>mOS</td>
<td>NR</td>
<td>20 months</td>
<td>NR</td>
<td>10.8 months</td>
</tr>
</tbody>
</table>

DCR, disease control rate; NR, not reached; TC, tumor cell; TRAE, treatment-related adverse event.

Potential Impact of Immuno-Oncology Agents on Ovarian Cancer Treatment Paradigm

Neoadjuvant therapy – 3-4 cycles

Debulking surgery

1st-line platinum-based chemotherapy

Response

1st-line maintenance

Lack of response or early recurrence (<6 mo)

Lack of response or early recurrence (>6 mo) = platinum sensitive

Re-treat with platinum

Response

2nd-line maintenance

Late recurrence (>6 mo) = platinum sensitive

Re-treat with platinum

Response

= Frontline

- Javelin Ovarian 100 (avelumab)
- Pembrolizumab + chemotherapy

PS recurrence

- Atalante (atezolizumab)
- Keynote 100 (pembrolizumab)
- Pembrolizumab + bevacizumab

Resistant

- Javelin Ovarian 200 (avelumab)
- NRG GY-009 (atezolizumab)
- Keynote 100 (pembrolizumab)
- Pembrolizumab + bevacizumab
- EORTC-1508 (atezolizumab)

PS, platinum sensitive.

JAVELIN Ovarian 100
Avelumab Platinum Combo + Maintenance (Frontline)

Enrollment Criteria
- Previously untreated
- Stage III-IV
- Prior debulking surgery or plan for neoadjuvant chemotherapy
- ECOG PS 0 or 1
- Mandatory archival tissue

Primary Endpoint:
- PFS

Secondary Endpoints:
- Maintenance PFS, OS, ORR, duration of response, pCR, PROs, safety, PK

Patients with SD or better will be allowed to continue to maintenance
- Chemotherapy: Choice of Q3W carboplatin-paclitaxel OR carboplatin + weekly paclitaxel
- Maintenance avelumab up to 2 years

Enrollment Criteria

- High-grade ovarian cancer
- No prior treatment
- Disposition to neoadjuvant chemotherapy
- Peripheral neuropathy Grade 0 or 1
- Measurable disease
- ECOG PS 0 or 1
- Mandatory archival tissue or new tissue sample

Primary Endpoint: PFS

- Participants receive carboplatin IV on day 1 and paclitaxel 80 mg/m² IV on days 1, 8, and 15 every 21 days for 3 cycles of therapy
- After observation, participants without evidence of progression will undergo interval cytoreductive surgery
- After surgery, participants will restart chemotherapy as previously prescribed, with the addition of pembrolizumab 200 mg IV on day 1 every 21 days for 3 cycles
- Pembrolizumab maintenance therapy (200 mg IV every 21 days) will be given for a total of 20 cycles or until progression

Enrollment Criteria
• Recurrent ovarian cancer
• Measurable disease
• ECOG PS 0 or 1
• Mandatory submission of tumor tissue samples

Pembrolizumab, Bev, & Cyclophosphamide in Recurrent Ovarian Cancer
Phase 2 Study (NCT02853318)

Primary Endpoint: Safety, PFS
Secondary Endpoints: OS, antitumor immune response, objective tumor response

Chemotherapeutic agents
- Pembrolizumab
- Bevacizumab
- Cyclophosphamide

n = ~40

• Patients receive pembrolizumab IV and bevacizumab IV on day 1 and cyclophosphamide PO QD on days 1-21
• Treatment repeats every 3 weeks for up to 17 courses in the absence of disease progression or unacceptable toxicity
Ex vivo TIL Expansion

1. Excise tumour
2. Plate fragments
3. Culture with 6,000 IU/ml IL2
4. Assay for specific tumour recognition
5. Select and expand to 10^{10} cells
6. Reinfuse post-lymphodepletion
Estimates of the Worldwide Incidence of Cervical Cancer

Source: GLOBOCAN 2014; IARC
Human Papillomavirus

Non enveloped Icosahedral DNA Virus
Upstream reg region -reg viral proteins

L1 encodes for major capsid proteins
-Often integrated in Cx Ca

6 open reading frames
Categories of HPV Vaccines

• **Prophylactic**
 – Induce neutralizing antibodies to the L1 capsid protein
 – Protect against transmission and acquisition of HPV infection

• **Therapeutic**
 – Induce immunity to the E6/ E7 and other antigens expressed in HPV-infected epithelial cells
 – Induce Type 1 T-cell responses

Kadish and Einstein, *Curr Opin Oncol* 2005
Vaccine Approaches

- Autologous
- Allogenic
- Dendritic Cell
- Peptide
- Viral
- Bacterial
- RNA/DNA
<table>
<thead>
<tr>
<th>Company/Institution</th>
<th>Antigen</th>
<th>Type</th>
<th>HPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zycos/MGI/Eisai</td>
<td>E6, E7</td>
<td>Microparticle delivered DNA</td>
<td>16, 18</td>
</tr>
<tr>
<td>Stressgen</td>
<td>E7</td>
<td>Fusion Protein: mycobacterial heat shock protein/E7 (Hsp E7)</td>
<td>16</td>
</tr>
<tr>
<td>Johns Hopkins</td>
<td>E7</td>
<td>pNGVLa-Sig/E7(detox)/HSP70</td>
<td>16</td>
</tr>
<tr>
<td>Transgene/Roche</td>
<td>E6,E7, IL2</td>
<td>Live rVaccinia virus (TA-HPV)</td>
<td>16</td>
</tr>
<tr>
<td>Xenova/Cantab</td>
<td>E6,E7</td>
<td>Live rVaccinia virus (TA-HPV)</td>
<td>16, 18</td>
</tr>
<tr>
<td>Xenova/Cantab</td>
<td>L2/E6/E7</td>
<td>Fusion Protein (TA-CIN)</td>
<td>16</td>
</tr>
<tr>
<td>Cantab</td>
<td>L2/E7</td>
<td>Fusion Protein (TA-GW)</td>
<td>6</td>
</tr>
<tr>
<td>CSL</td>
<td>E6/E7</td>
<td>Fusion Protein (CerVax 16)</td>
<td>16</td>
</tr>
<tr>
<td>Cytel</td>
<td>E7</td>
<td>Peptide</td>
<td>16</td>
</tr>
<tr>
<td>Medigene</td>
<td>L1, E7</td>
<td>Chimeric VLPs</td>
<td>16</td>
</tr>
<tr>
<td>University of Leiden</td>
<td>E7</td>
<td>Peptide</td>
<td>16</td>
</tr>
<tr>
<td>Inovio</td>
<td>E6, E7</td>
<td>DNA Vaccine-Electroporation</td>
<td>16, 18</td>
</tr>
<tr>
<td>Aduro</td>
<td>E7</td>
<td>Listeria monocytogenes</td>
<td>16</td>
</tr>
<tr>
<td>Advaxis</td>
<td>E7</td>
<td>Listeria monocytogenes</td>
<td>16</td>
</tr>
</tbody>
</table>
Tailoring selection of immunotherapy based on detecting adaptive immune resistance

Ribas et al, Cancer Discov 2015
Adoptive T-cell Transfer Therapy

- Infusion of transduced T-cells
- Leukapheresis
- T-cell expansion
- T-cell transduction

- TCR-gene therapy
- TILs
- Vaccines
- Checkpoint inhibitors

- Intracellular antigens
 - MHC-dependent
 - APM-dependent
 - Endogenous costimulatory signals

- Surface antigens
 - MHC-independent
 - APM-independent
 - Costimulation on antigen recognition

Rodriguez-Garcia A et al Gyn Onc 2017
Frequency of Somatic Mutations Across Tumor Types

Adoptive T Cell Therapy: Schema for HPV-Targeted Tumor-Infiltrating Lymphocytes (HPV-TIL)

Testing for E6 and E7 reactivity

T cell rapid expansion

T cells cultured from tumor fragments

T cell infusion

Cyclophosphamide 60 mg/Kg x 2 + fludarabine 25 mg/m² x 5 followed by aldesleukin

Tumor excision

Prolonged Tumor Regression Following Single Infusion of Autologous Tumor-Targeted T Cells

Stevanovic S, et al. LBA3008 (ASCO 2014)
A Phase I/II Study of Ipilimumab in Metastatic or Recurrent Cervical Carcinoma

- 10 mg/kg q 21 d for x4 cycles; followed by 4 cycles of maintenance therapy (same dose) q 12 wks
- 42 patients, median age of 49 years (23-78)
 - 29 squamous, 13 adenocarcinoma
 - 35 had prior radiation completed
 - 21 had received 2/3 prior regimens
- 34 evaluable pts: 2 PR (6%), 9 SD & 23 PD
- Median PFS was 2.5 months (95% CI: 2.3-3.2)
- Gr 3 toxicities included diarrhea (4 pts) & colitis (3 pts)
- Did not meet the objective of 4 responders

ClinicalTrials.gov Identifier: NCT01693783
Pembrolizumab in Adv Cervical Cancer: Ph Ib

KEYNOTE-028 (NCT02054806): Phase 1b Multicohort Study of Pembrolizumab for PD-L1–positive Advanced Solid Tumors

Patients
- Unresectable or metastatic cervical cancer
- Failure of or inability to receive standard therapy
- ECOG PS 0 or 1
- Measurable disease (RECIST v1.1)
- PD-L1 positive†

Pembrolizumab
10 mg/kg IV Q2W

Response Assessment†
- Complete response, partial response, or stable disease
- Treat for 24 months, or until progression§ or intolerable toxicity
- Confirmed progressive disease§ or unacceptable toxicity
- Discontinue pembrolizumab

‡Response assessment: Every 8 weeks for the first 6 months; every 12 weeks thereafter

Primary end points: ORR per RECIST v1.1 and safety
Secondary end points: PFS, OS, duration of response

§Membranous PD-L1 expression in ≥1% of tumor or stromal cells using a prototype immunohistochemistry assay and 22C3 antibody (Merck).

Presented By Jean-Sebastien Frenel at 2016 ASCO Annual Meeting
Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristic, n (%)</th>
<th>N = 24</th>
<th>Characteristic, n (%)</th>
<th>N = 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, years (range)</td>
<td>41 (26–62)</td>
<td>Prior radiotherapy</td>
<td>23 (96)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td>Prior lines of therapy for advanced disease</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>15 (63)</td>
<td>1</td>
<td>9 (38)</td>
</tr>
<tr>
<td>Asian</td>
<td>1 (4)</td>
<td>2</td>
<td>6 (25)</td>
</tr>
<tr>
<td>Not specified</td>
<td>8 (33)</td>
<td>≥3</td>
<td>9 (38)</td>
</tr>
<tr>
<td>ECOG performance status of 1, n (%)</td>
<td>18 (75)</td>
<td>Prior platinum</td>
<td>23 (96)</td>
</tr>
<tr>
<td>Histology, n (%)</td>
<td></td>
<td>Prior bevacizumab</td>
<td>10 (42)</td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>23 (96)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>1 (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metastatic stage, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MX</td>
<td>1 (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M0</td>
<td>6 (25)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>15 (63)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>2 (8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pembrolizumab in Adv Cervical Cancer: Ph Ib

Antitumor Activity
(RECIST v1.1, Investigator Review)

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>%</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR^†</td>
<td>4</td>
<td>17</td>
<td>5–37</td>
</tr>
<tr>
<td>Partial response</td>
<td>4</td>
<td>17</td>
<td>5–37</td>
</tr>
<tr>
<td>Stable disease</td>
<td>3</td>
<td>13</td>
<td>3–32</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>16</td>
<td>67</td>
<td>45–84</td>
</tr>
<tr>
<td>No assessment^‡</td>
<td>1</td>
<td>4</td>
<td><1–21</td>
</tr>
</tbody>
</table>

N = 24

Data cutoff date: Feb 17, 2016. Only confirmed responses are included. Patients who received ≥1 dose of pembrolizumab and had a baseline scan with measurable disease per RECIST v1.1 are included. ^†There were no complete responses. ^‡Patient did not have a postbaseline response evaluation.
Longitudinal Change From Baseline in Tumor Size (RECIST v1.1, Investigator Review)

-30% decrease
+20% increase

Change From Baseline, %

Time, weeks

0 8 16 24 32 40 48 56 64 72

Nonresponder
Responder

Presented By Jean-Sebastien Frenel at 2016 ASCO Annual Meeting

Data cutoff date: Feb 17, 2016. Patients who received ≥1 dose of pembrolizumab, had a baseline scan with measurable disease per RECIST v1.1, and a post-baseline assessment are included (n = 20). One patient was excluded due to 2 scans for the same assessment out of window.
Progression-Free Survival† and Overall Survival

Progression-Free Survival
- Median (95% CI), 2 months (2–4)
- 6-month, 21%
- 12-month, 8%

Overall Survival
- Median (95% CI), 9 months (4–12)
- 6-month, 67%
- 12-month, 33%

Data cutoff date: Feb 17, 2016.
Patients who received ≥1 dose of pembrolizumab and had a baseline scan with measurable disease per RECIST v1.1 are included. †RECIST v1.1 by investigator review.
NRG GY002
Nivolumab in Persistent, Recurrent, or Metastatic Cervical Cancer

- Measurable disease
- only 1 prior systemic regimen for management of persistent, recurrent or metastatic disease
- Nivolumab 3 mg/kg IV every 2 weeks
- 2 stage design
 - First stage: n = 12
 - Second stage (if warranted): n = 13
 - Activated May 18, 2015
 - Temporarily Closed August 2015 after first stage
 - 1 response needed to move to second stage
 - Closed June 2016

PI: Alessandro Santin ClinicalTrials.gov Identifier: NCT02257528
NRG GY002
Nivolumab in Persistent, Recurrent, or Metastatic Cervical Cancer

Figure 1
Cumulative Accrual for NRG GY002 - Data as of 11/3/2015

Cumulative Number of Patients Enrolled

Month and Year

Projected Accrual
Observed Accrual

PI: Alessandro Santin ClinicalTrials.gov Identifier: NCT02257528
Ph I GOG (NRG) 9929: Schema

Chemoradiation (weekly for 6 weeks)
Concurrent Weekly Cisplatin 40mg/m²/week (max dose 70 mg)
AND

Extended Field Radiation: pelvis + para-aortics
4500 cGy in 25 fractions to the para-aortic nodes (180 cGy/fraction)
4500 cGy in 25 fractions to the pelvis (180 cGy/fraction)

Note: All radiation is to be completed within 56 ± 3 days.

Intracavitary Brachytherapy
LDR 4000cGy
OR
HDR 3000cGy

~2 weeks

Adjuvant Immunotherapy
Ipilimumab will be given ~2 weeks following completion of all chemoradiation and be given every 3 weeks x 4 doses total. Patients may commence ipilimumab up to 6 weeks following completion of all chemoradiation to allow resolution of chemoradiation associated acute toxicities.

Dose Escalation Schema

<table>
<thead>
<tr>
<th>Dose Level</th>
<th>Ipilimumab</th>
<th>Rx Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Starting Dose)</td>
<td>3 mg/kg</td>
<td>q3 weeks x 4*</td>
</tr>
<tr>
<td>2</td>
<td>10 mg/kg</td>
<td>q3 weeks x 4*</td>
</tr>
<tr>
<td>1a§</td>
<td>6 mg/kg</td>
<td>q3 weeks x 4*</td>
</tr>
</tbody>
</table>

†Once the MTD is estimated, the expansion cohort will start.
§Dose level 1a will be used if 10 mg/kg is found to exceed the MTD.

ClinicalTrials.gov Identifier:
NCT01711515
Lm Technology™: Harnessing Unique Life Cycle of Lm in APCs

- **Lm-LLO & HPV E7 antigen** presented & taken up by dendritic cells (antigen presenting cells or APCs)
- Dendritic cells activated & generate immune response through both the MHC I & II pathways
- Robust T-cell response generated towards antigen secreted by Lm-LLO & redirected to tumors expressing the same HPV E7 antigen
- "Perceived" acute listeriosis causes immune response
- Over-rides checkpoint inhibitors & negative regulators of cellular immunity

MHS, major histocompatibility complex
12-month Survival Rates in Pre-treated PRmCC

GOG/NRG 0265 Study Design & Eligibility

- N = ~67 Simon 2 Stage design
- > 18 years
- Persistent/recurrent metastatic (PRmCC) squamous/non-squamous cervical cancer
- > 1 prior line of systemic dose therapy for PRmCC, *excluding that received as a component of primary curative treatment*
- Prior bevacizumab allowed, but not required
- GOG PS 0/1
- Measurable disease > 1 target lesion (RECIST 1.1)

Co-Primary Endpoints:
- 12-month survival rate
- Tolerability/safety of ADXS11-001

Secondary Endpoints:
- Progression-free survival (PFS)
- Overall survival (OS)
- Objective response rate (ORR)

ADXS11-001 Monotherapy
1x10^9 cfu x 3 doses q 28 days (month 1, 2, 3) as an 80 ml infusion over 15 min

- ADXS11-001 Day 0
- ADXS11-001 Day 28
- ADXS11-001 Day 56

https://www.clinicaltrials.gov/ct2/show/NCT01266460
NRG 0265- 12 mos. Overall Survival vs. Historical Cohorts

Historical Perspective of 12-Month Survival Rates in GOG Phase II Trials for Recurrent/Metastatic Cervical Cancer

Axalimogene Filolisbac (ADXS-HPV): Phase 3 AIM2CERV Study Schema

High risk, locally advanced cervical cancer
- FIGO stage I-II with positive pelvic nodes
- FIGO stage III-IV
- Any FIGO stage with para-aortic nodes

• N = 450

Cisplatin (at least 4 wks exposure) and Radiation (min. 40 Gy external beam radiation)

2:1 RANDOMIZE

Reference Group
Placebo IV Up to 1 yr

Treatment Group
ADXS11-001 (1 x 10^9 cfu) Up to 1 yr

Primary Endpoint: PFS
Ph I/II CervIISA:

- Advanced Cervical Cancer
- ISA101 vaccine = 13 overlapping HPV16 (E6 & 7) synthetic long peptides
- N = 60 pts 4 dose levels of vaccine; strong association btw HPV-specific T-cell response measured via ELISpot
- Med OS not reached for 2 highest doses

Melief CJ et al ASCO –SITC 2017
Em Ca IO Trials

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Eligibility</th>
<th>Study</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durvalumab, Vigil (bi-shRNAfurin & GMCSF Aug. Autologous Tumor Cell Immunotherapy)</td>
<td>Locally advanced or metastatic EM, uterine, breast, ovarian, FT, primary peritoneal, cervical</td>
<td>NCT02725489</td>
<td>Recruiting</td>
</tr>
<tr>
<td>Durvalumab; Durvalumab, Tremelimumab</td>
<td>Persistent or recurrent endometrial carcinoma (endometrioid, serous, undifferentiated, dedifferentiated, clear cell, mixed, other adenocarcinoma) or carcinosarcoma</td>
<td>NCT03015129</td>
<td>Recruiting</td>
</tr>
<tr>
<td>Pembrolizumab</td>
<td>Persistent or recurrent EM CA (endometrioid, serous, clear cell, undifferentiated, mixed, other adenocarcinoma) or CS that is hypermutated (MMR gene defect) or ultra-mutated (POLE mutation) on NGS</td>
<td>NCT02899793</td>
<td>Recruiting</td>
</tr>
<tr>
<td>Avelumab</td>
<td>Persistent or recurrent EM CA that are either 1) POLE mutated or MMR loss or 2) microsatellite stable on IHC</td>
<td>NCT02912572</td>
<td>Recruiting</td>
</tr>
<tr>
<td>Nivolumab; Nivolumab, Cabozantinib</td>
<td>Advanced, recurrent, or metastatic endometrial carcinoma or carcinosarcoma with MSI/MMR results available</td>
<td>NCT03367741</td>
<td>Not yet recruiting</td>
</tr>
<tr>
<td>Atezolizumab, Carboplatin, Cyclophosphamide</td>
<td>Advanced gynecologic cancer (endometrial, cervical, ovarian) or advanced breast cancer</td>
<td>NCT02914470</td>
<td>Active, not recruiting</td>
</tr>
<tr>
<td>Pembrolizumab, IMGN853</td>
<td>Advanced endometrial, epithelial ovarian, primary peritoneal, or fallopian tube cancer with folate receptor alpha positive tumor expression</td>
<td>NCT02606305</td>
<td>Recruiting</td>
</tr>
<tr>
<td>Nivolumab, Ipilimumab</td>
<td>Advanced or metastatic endometrial cancer (grade 3 endometrioid, serous, clear cell, or mixed high grade) or bone/soft tissue sarcoma; all must have MMR expression loss on IHC</td>
<td>NCT02982486</td>
<td>Not yet recruiting</td>
</tr>
<tr>
<td>Pembrolizumab, Carboplatin, Ptx</td>
<td>Advanced or recurrent endometrial carcinoma</td>
<td>NCT02549209</td>
<td>Recruiting</td>
</tr>
<tr>
<td>Durvalumab, Radiation Therapy; Durvalumab, Tremelimumab, Radiation Therapy</td>
<td>Advanced or recurrent endometrial, ovarian, fallopian tube, primary peritoneal, cervical, vaginal, or vulvar cancer</td>
<td>NCT03277482</td>
<td>Not yet recruiting</td>
</tr>
</tbody>
</table>
Em Ca IO Trials

<table>
<thead>
<tr>
<th>Trial Name</th>
<th>Eligibility</th>
<th>Study Code</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivolumab</td>
<td>Metastatic or recurrent EM CA, carcinosarcoma, LMS, undiff. sarcoma, high grade endometrial stroma sarcoma, or ovarian/fallopian tube carcinosarcoma that are MSI-high, MMR-deficient, or hypermutated</td>
<td>NCT03241745</td>
<td>Recruiting</td>
</tr>
<tr>
<td>Vesicular stomatitis virus-human interferon beta-sodium iodide symporter (VSV-hIFNbeta-NIS)</td>
<td>Stage IV or recurrent EM CA (endometrioid, serous, undiff., clear cell, mixed, or other adenocarcinoma)</td>
<td>NCT03120624</td>
<td>Suspended (per study design)</td>
</tr>
<tr>
<td>Pembrolizumab, Immune Modul Cocktail (Vitamin D, Lansoprazole Teva, Cyclophosphamide, Aspirin), Radiation Therapy, Curcumin</td>
<td>Persistent or recurrent endometrial carcinoma, cervical carcinoma, or uterine sarcoma</td>
<td>NCT03192059</td>
<td>Recruiting</td>
</tr>
<tr>
<td>Spartalizumab, MCS110 (Anti-M-CSF Monoclonal Antibody)</td>
<td>Advanced EM CA, melanoma, pancreatic, or triple negative breast cancer</td>
<td>NCT02807844</td>
<td>Recruiting</td>
</tr>
</tbody>
</table>
FDA Grants Priority Review to Pembrolizumab for New Indication in Microsatellite Instability–High Cancer

By The ASCO Post
Posted: 11/29/2016 1:11:44 PM
Conclusions

• Immuno-oncology: exciting, emerging & extremely complex
• NextGen technologies & systems biology will dynamically profile vulnerabilities
• PD-1 blockade may unleash diverse antitumor T cell re-activities.
• Multiple I/O trials in Gyn Cancers
• MSI High is Universal target
Thank You