New Directions in Acute Leukemia Therapies

Brian A. Jonas, M.D., Ph.D.
Assistant Professor of Medicine
UC Davis Comprehensive Cancer Center
August 25, 2017
Brian Jonas, MD, PhD
New Directions in Acute Leukemia Therapies

Relevant financial relationships in the past twelve months by presenter or spouse/partner.

Grant/Research Support: AbbVie, Pharmacyclics, Glycomimetics, Daiichi Sankyo, Genentech, Esanex and Kalobios.

The speaker will directly disclose the use of products for which are not labeled (e.g., off label use) or if the product is still investigational.
Learning Objectives

• Review the new FDA approvals for acute leukemia
• Discuss some new therapies for acute leukemia
• Discuss evolving standards of care for acute leukemia
• Review select clinical trials
Summer of 2017 = “The Summer of Leukemia”

- **FDA Approvals**
 - 4/28/17 – *Midostaurin* for newly diagnosed FLT3+ AML in combination with 7+3
 - 7/12/17 – *Blinatumomab* regular approval for R/R Ph- B-ALL and new approval Ph+ B-ALL
 - 8/1/17 – *Enasidenib* for R/R AML with an IDH2 mutation
 - 8/3/17 – *Liposome encapsulated daunorubicin and cytarabine* (aka Vyxeos, CPX-351) for newly diagnosed t-AML and AML with MRC
 - 8/17/17 – *Inotuzumab ozogamicin* for R/R B-ALL
 - 8/30/17 – *Tisagenlecleucel* (aka CD19 CAR T-cells) for R/R B-ALL up to age 25
 - 9/1/17 – *Gemtuzumab ozogamicin* for newly diagnosed AML expressing CD33
Summer of 2017 = “The Summer of Leukemia”

- FDA Approvals
 - 4/28/17 – Midostaurin for newly diagnosed FLT3+ AML in combination with 7+3
 - 7/12/17 – Blinatumomab regular approval for R/R Ph- B-ALL and new approval Ph+ B-ALL
 - 8/1/17 – Enasidenib for R/R AML with an IDH2 mutation
 - 8/3/17 – Liposome encapsulated daunorubicin and cytarabine (aka Vyxeos, CPX-351) for newly diagnosed t-AML and AML with MRC
 - 8/17/17 – Inotuzumab ozogamicin for R/R B-ALL
 - 8/30/17 – Tisagenlecleucel (aka CD19 CAR T-cells) for R/R B-ALL up to age 25
 - 9/1/17 – Gemtuzumab ozogamicin for newly diagnosed AML expressing CD33
New Therapies for AML
Targets of Various FLT3i

- AC220 (Quizartinib)
- CEP-701 (Lestaurnib)
- MLN-518 (Tandutinib)
- PKC-412 (Midostaurin)
- CGP-52421
- Sorafenib
- Sunitinib

Randomized Mido vs Placebo with Induction and Consolidation, transplant allowed
717 pts (360 M, 357 P), FLT3-ITD and/or TKD+
CR 59% M vs 54% P
OS HR 0.77 (p=0.007)
EFS HR 0.8 (p=0.004)
Crenolanib

Crenolanib – type I FLT3 inhibitor active against FLT3-ITD and TKD mutations

P1 study of Crenolanib plus Induction, Consolidation, Transplant allowed, Maintenance after transplant

<table>
<thead>
<tr>
<th>Induction Chemotherapy Regimen</th>
<th># Evaluable Patients</th>
<th>CR after 1 Cycle of Induction</th>
<th>CR after Additional Cycle of Chemotherapy*</th>
<th>Overall Complete Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytarabine + Daunorubicin (n=18)</td>
<td>18</td>
<td>16</td>
<td>1</td>
<td>17/18 (94%)</td>
</tr>
<tr>
<td>Cytarabine + Idarubicin (n=8)</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>7/7 (100%)</td>
</tr>
<tr>
<td>TOTAL (n= 26 pts)</td>
<td>25</td>
<td>22</td>
<td>2</td>
<td>24/25 (96%)</td>
</tr>
</tbody>
</table>

1 pt re-induced with cytarabine/idarubicin and 1 pt received HiDAC

We are opening the Phase 3 study here!
Targeting Mutated IDH

- Mutation frequency = ~15-20%
- Neomorphic activity
- Cooperates with FLT3, RAS, DNMT3A mutations to drive leukemia
- **AG-120 (IDH1i)**
 NCT02074839
- **AG-221 (IDH2i)**
 NCT01915498

AG-221: first-in-class, oral, potent, reversible, selective inhibitor of mutant IDH2, triggers blast differentiation

P1 study (NCT01915498) Advanced IDH2 mutant heme malignancies (R140Q and R172K)

<table>
<thead>
<tr>
<th></th>
<th>RR-AML (n = 159)</th>
<th>Untreated AML (n = 24)</th>
<th>MDS (n = 14)</th>
<th>All (N = 209)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Response (CR, CRp, CRi, mCR, PR)</td>
<td>59 (37%)</td>
<td>10 (42%)</td>
<td>7 (50%)</td>
<td>79 (38%)</td>
</tr>
<tr>
<td>CR</td>
<td>29 (18%)</td>
<td>4 (17%)</td>
<td>3 (21%)</td>
<td>37 (18%)</td>
</tr>
<tr>
<td>CRp</td>
<td>1 (1%)</td>
<td>1 (4%)</td>
<td>1 (7%)</td>
<td>3 (1%)</td>
</tr>
<tr>
<td>CRi</td>
<td>3 (2%)</td>
<td>0</td>
<td>0</td>
<td>3 (1%)</td>
</tr>
<tr>
<td>mCR</td>
<td>9 (6%)</td>
<td>1 (4%)</td>
<td>3 (21%)</td>
<td>14 (7%)</td>
</tr>
<tr>
<td>PR</td>
<td>17 (11%)</td>
<td>4 (17%)</td>
<td>0</td>
<td>22 (11%)</td>
</tr>
<tr>
<td>SD</td>
<td>72 (45%)</td>
<td>9 (38%)</td>
<td>6 (43%)</td>
<td>96 (46%)</td>
</tr>
<tr>
<td>PD</td>
<td>10 (6%)</td>
<td>1 (4%)</td>
<td>0</td>
<td>11 (5%)</td>
</tr>
<tr>
<td>Not evaluable</td>
<td>18 (11%)</td>
<td>4 (17%)</td>
<td>1 (7%)</td>
<td>23 (11%)</td>
</tr>
</tbody>
</table>

- Overall response by IDH mutation type: R140Q 36% / R172K 42%

Sustained plasma 2-HG inhibition (97% in R140Q, 50% in R172K)

SIMILAR RESPONSE WITH IDH1 inhibitor AG-120
Targeting Bcl-2

- Apoptosis is dysregulated in AML
- ABT-263 (Navitoclax) is an oral inhibitor of Bcl-2, Bcl-XL and Bcl-w
 - Bcl-xL inhibition leads to thrombocytopenia
- ABT-199 engineered from ABT-263 to be a selective inhibitor of Bcl-2
- Preclinical activity in AML
Venetoclax plus HMA for Elderly AML

Table 4. Overall Response in Individual Cohorts in All Patients

<table>
<thead>
<tr>
<th>Overall response, n (%)</th>
<th>Arm A (VEN + DEC)</th>
<th>Arm B (VEN + AZA)</th>
<th>Total N=45</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cohort 1 Cohorts 2/3 Cohort 4</td>
<td>Cohort 1 Cohorts 2/3 Cohort 4</td>
<td></td>
</tr>
<tr>
<td>VEN 400 mg n=6</td>
<td>VEN 800 mg n=12</td>
<td>VEN 1200 mg n=5</td>
<td>VEN 400 mg n=4</td>
</tr>
<tr>
<td>CR</td>
<td>2 (33)</td>
<td>3 (25)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>CRi</td>
<td>1 (17)</td>
<td>6 (50)</td>
<td>3 (60)</td>
</tr>
<tr>
<td>PR</td>
<td>0 (0)</td>
<td>1 (8)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>MLFS<sup>a</sup></td>
<td>0 (0)</td>
<td>1 (8)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>RD</td>
<td>1 (17)</td>
<td>1 (8)</td>
<td>1 (20)</td>
</tr>
<tr>
<td>Non-evaluable<sup>b</sup></td>
<td>2 (33)</td>
<td>0 (0)</td>
<td>1 (20)</td>
</tr>
<tr>
<td>CR+CRi</td>
<td>3 (50)</td>
<td>9 (75)</td>
<td>3 (60)</td>
</tr>
<tr>
<td>ORR (CR+CRi+PR)</td>
<td>3 (50)</td>
<td>10 (83)</td>
<td>3 (60)</td>
</tr>
<tr>
<td>CR+CRi+PR+MLFS</td>
<td>3 (50)</td>
<td>11 (92)</td>
<td>3 (60)</td>
</tr>
</tbody>
</table>

^aLess than 5% blasts in an aspirate sample but incomplete neutrophil and platelet recovery.

^b3 patients discontinued prior to end of cycle 1 due to adverse events of infections; 1 patient found to have CNS leukemia on Day 7.

CR, complete remission; CRi, complete remission with incomplete marrow recovery; PR, partial remission; MLFS, Morphologically leukemia free state; RD, resistant disease.

DiNardo et al, ASH 2015 Abstract# 327.
Pollyea et al, ASCO 2016 Abstract# 7009.
CPX-351 P3 Study
ALFA-0701 Trial
New Therapies for ALL
Survival is Poor in Relapsed ALL

MRC UKALL2/ ECOG2993 Study (n=609)

LALA-94 Study (n=421)

Fielding et al, Blood 2007; Tavernier et al, Leukemia 2007
Inotuzumab ozogamicin

CD22-Calicheamicin antibody-drug conjugate
CD22 on 80-90+% of B-ALL
Novel targeted therapies for ALL

Inotuzumab vs SOC for R/R B-ALL (INO-VATE)

1:1 Randomization of Inotuzumab vs SOC (FLAG, Mito-AraC, or HiDAC) for R/R CD22+ B-ALL
Ino 0.5-0.8mg D1, 8 and 15 every 21-28d up to 6 cycles

CR/CRi 80.7% vs 29.4%
MRD <0.01% 78.4% vs 28.1%
All subgroups except t(4;11) favored Ino for CR
Allo-HCT 41% vs 11%

VOD 11% vs 1%
10 of 48 patients undergoing allo-HCT developed VOD
Prio allo-HCT and dual-alkylating conditioning associated with VOD

Blinatumomab – A Bispecific T-cell Engager

- α-CD3 monoclonal antibody
- BITE antibody composed of two single chain antibodies
- α-target monoclonal antibody

T-cell activation

Cytotoxic granule
CD3
Cytolytic synapse
Tumor-associated antigen
- CD19
- EpCAM
- Her2/neu
- EGFR
- CEA
- EpHA2
- CD33
- MCSP

Redirected lysis

Target cell

Blinatumomab vs SOC for R/R ALL (TOWER)

2:1 Randomization of Blinatumomab vs SOC (FLAG, HiDAC, HD-MTX, Clof) for R/R B-ALL
Blinatumomab for up to 2 induction cycles, 3 consolidation cycles and 12mo maintenance

- Median Duration of Remission
 - Blin 7.3mo (95% CI, 5.8-9.9mo)
 - SOC 4.6mo (95% CI, 1.8-19mo)
- 24% in each arm underwent allogeneic HCT
Blinatumomab vs SOC for R/R ALL (TOWER)

A Prespecified Subgroup Analysis of Overall Survival

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Blinatumomab</th>
<th>Chemotherapy</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><35 yr</td>
<td>123</td>
<td>60</td>
<td>0.70 (0.46–1.06)</td>
</tr>
<tr>
<td>≥35 yr</td>
<td>148</td>
<td>74</td>
<td>0.77 (0.55–1.08)</td>
</tr>
<tr>
<td>BM blasts ≥50%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salvage-treatment phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First</td>
<td>114</td>
<td>65</td>
<td>0.60 (0.39–0.91)</td>
</tr>
<tr>
<td>Second</td>
<td>91</td>
<td>43</td>
<td>0.59 (0.38–0.91)</td>
</tr>
<tr>
<td>Third or later</td>
<td>66</td>
<td>26</td>
<td>1.13 (0.64–1.99)</td>
</tr>
<tr>
<td>BM blasts ≥50%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous allogeneic stem-cell transplantation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>94</td>
<td>46</td>
<td>0.81 (0.51–1.29)</td>
</tr>
<tr>
<td>No</td>
<td>177</td>
<td>88</td>
<td>0.70 (0.51–0.96)</td>
</tr>
<tr>
<td>Bone marrow blasts ≤50%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><50%</td>
<td>84</td>
<td>38</td>
<td>0.60 (0.35–1.03)</td>
</tr>
<tr>
<td>≥50%</td>
<td>18</td>
<td>96</td>
<td>0.82 (0.61–1.10)</td>
</tr>
<tr>
<td>Overall</td>
<td>271</td>
<td>134</td>
<td>0.71 (0.55–0.93)</td>
</tr>
</tbody>
</table>

B Prespecified Subgroup Analysis of Remission Rate

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Blinatumomab</th>
<th>Chemotherapy</th>
<th>Odds Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><35 yr</td>
<td>53/123 (43.1)</td>
<td>15/60 (25.0)</td>
<td>2.27 (1.15–4.50)</td>
</tr>
<tr>
<td>≥35 yr</td>
<td>66/148 (44.6)</td>
<td>18/74 (24.3)</td>
<td>2.50 (1.34–4.66)</td>
</tr>
<tr>
<td>BM blasts ≤50%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salvage-treatment phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First</td>
<td>60/114 (52.6)</td>
<td>23/65 (35.4)</td>
<td>2.03 (1.08–3.80)</td>
</tr>
<tr>
<td>Second</td>
<td>36/91 (39.6)</td>
<td>7/43 (16.3)</td>
<td>3.37 (1.35–8.38)</td>
</tr>
<tr>
<td>Third or later</td>
<td>23/66 (34.8)</td>
<td>3/26 (11.5)</td>
<td>4.10 (1.11–15.12)</td>
</tr>
<tr>
<td>Previous allogeneic stem-cell transplantation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>38/94 (40.4)</td>
<td>5/46 (10.9)</td>
<td>5.56 (2.02–15.36)</td>
</tr>
<tr>
<td>No</td>
<td>81/177 (45.8)</td>
<td>28/88 (31.8)</td>
<td>1.81 (1.06–3.09)</td>
</tr>
<tr>
<td>Bone marrow blasts ≤50%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><50%</td>
<td>55/84 (65.5)</td>
<td>13/38 (34.2)</td>
<td>3.65 (1.63–8.17)</td>
</tr>
<tr>
<td>≥50%</td>
<td>64/186 (34.4)</td>
<td>20/96 (20.8)</td>
<td>1.99 (1.12–3.55)</td>
</tr>
<tr>
<td>Overall</td>
<td>119/271 (43.9)</td>
<td>33/134 (24.6)</td>
<td>2.40 (1.51–3.80)</td>
</tr>
</tbody>
</table>

BM blasts ≥50%: 74% Blin vs 78% SOC

ORR (CR/CRi/CRp): 43.9% Blin vs 24.6% SOC

MRD negative: 76% Blin vs 48% SOC

More SAE with Blin vs SOC; less cytopenia

<table>
<thead>
<tr>
<th>Parameter (N = 45)</th>
<th>n/N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary endpoint</td>
<td></td>
</tr>
<tr>
<td>CR/CRh (first 2 cycles)</td>
<td>16/45 (36)</td>
</tr>
<tr>
<td>• T315I mutation</td>
<td>4/10 (40)</td>
</tr>
<tr>
<td>• ≥ 2 prior 2+ generation TKI</td>
<td>11/27 (41)</td>
</tr>
<tr>
<td>• Prior ponatinib treatment</td>
<td>8/23 (35)</td>
</tr>
<tr>
<td>Secondary endpoints</td>
<td></td>
</tr>
<tr>
<td>Best response (first 2 cycles)</td>
<td>14/45 (31)</td>
</tr>
<tr>
<td>• CR</td>
<td>2/45 (4)</td>
</tr>
<tr>
<td>• CRh</td>
<td>2/45 (4)</td>
</tr>
<tr>
<td>• CRi (not including CRh)</td>
<td></td>
</tr>
<tr>
<td>Complete MRD response in pts with CR/CRh</td>
<td>14/16 (88)</td>
</tr>
<tr>
<td>• MRD response in pts with ABL-kinase mutations</td>
<td>6/6 (100)</td>
</tr>
<tr>
<td>Pts in CR/CRh who proceeded to allogeneic HCT</td>
<td>4/16 (25)</td>
</tr>
</tbody>
</table>

Response to therapy was independent of T315I mutation

Martinelli et al. ASH 2015.
Chimeric Antigen Receptor (CAR) T-Cells

~2-4 weeks from apheresis to patient
Capable of *in vivo* proliferation and maintenance

Maude et al, Hematology, 2014.
CD 19 CAR T-Cells Have Substantial Activity in R/R ALL

<table>
<thead>
<tr>
<th>Ref</th>
<th>T cell Engager</th>
<th>Population</th>
<th>Response</th>
<th>CRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maude et al. NEJM 2014</td>
<td>Anti-CD19 CART 4-1BB</td>
<td>N=30 Peds&Adults</td>
<td>CR=90%</td>
<td>100% CRS 27% Severe</td>
</tr>
<tr>
<td>Davila et al. SciTrMed 2014</td>
<td>Anti-CD19 CART CD28</td>
<td>N=16 Adults</td>
<td>CR=88%</td>
<td>43% Severe</td>
</tr>
<tr>
<td>Lee et al. Lancet 2015</td>
<td>Anti-CD19 CART CD28</td>
<td>N=21 Peds&AYA</td>
<td>CR=67%</td>
<td>76% CRS 28% Severe</td>
</tr>
<tr>
<td>Turtle et al. JCI 2016</td>
<td>Anti-CD19 CART 4-1BB</td>
<td>N=30 Adults</td>
<td>CR=93%</td>
<td>83% CRS</td>
</tr>
</tbody>
</table>

ELIANA Study (Grupp et al, ASH 2016 Abstract #221):
Global multicenter CAR T-cell trial
CR/CRi 82%, durable CR, all CR MRD negative
Intent to treat CR lower (~60%) in part due to deaths or other inability to get cells
CD 22 CAR T-Cells for R/R ALL

- CD19- relapses occur after CD19 CAR T-cells (~20%)
- Anti-CD22 CAR P1 dose escalation study

<table>
<thead>
<tr>
<th>Dose Level</th>
<th>Transduced CAR-T cells/kg</th>
<th>n</th>
<th>Complete Remission</th>
<th>Max Grade CRS</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3 x 10e5</td>
<td>6</td>
<td>1 (17%)</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1 x 10e6</td>
<td>8</td>
<td>7 (87.5%)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3 x 10e6</td>
<td>2</td>
<td>1 (50%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

N=16: Age 1-30
9 CRs:
8 in DL 2&3
5 CD19-
1 Ref to CART19

Safety:
Controllable CRS
No severe neuro AE
ASH 2016 Abstract #586 – early use of Tocilizumab (anti-IL6 Ab) and Dexamethasone did not affect CR rate and decreased severe CRS
Evolving Standards of Care
Standard treatments for AML

- Newly Diagnosed
 - Age 18-60
 - 7+3 (confirmed by the S1203 trial)
 - CD33+: 7+3 plus Gemtuzumab ozogamicin (age 50-70)
 - FLT3 mutated: 7+3 plus Midostaurin
 - Age 60+
 - Fit:
 - 7+3
 - CD33+: 7+3 plus Gemtuzumab ozogamicin (age 50-70)
 - t-AML or AML with MRC: Liposome encapsulated daunorubucin and cytarabine (age 60-75)
 - Unfit:
 - Low-intensity therapy
Standard treatments for AML

• Relapsed/Refractory
 – High Intensity:
 • FLAG -/+ Ida
 • G-CLAC
 • MEC
 • HiDAC
 • CLAG
 – Low intensity:
 • IDH2 mutation: Enasidenib
 • HMA
 • LDAC
 – Allotransplant
Standard treatments for ALL

• Newly diagnosed
 – AYA (age 15-39)
 • Ph-: Pediatric-inspired multiagent chemotherapy regimen
 • Ph+: Multiagent chemotherapy regimen plus TKI
 – Adult (age 40+)
 • Ph-: Multiagent chemotherapy regimen
 • Ph+: Multiagent chemotherapy regimen plus TKI
• Relapsed/Refractory
 – Blinatumomab
 – Inotuzumab ozogamicin
 – CD19 CAR T-cells (up to age 25)
 – Vincristine sulfate liposome injection
 – Nelarabine (T-ALL)
 – TKI
 – Multiagent chemo -/+ TKI
 – Allotransplant
Clinical Trials for AML and ALL
UCDCCC Acute Myeloid Leukemia Program

New AML Dx

Age < 60

Age ≥ 60 (fit)

Age ≥ 65 (unfit)

Refractory AML

Relapsed or Refractory AML

No Allo-HCT in CR1

NCI#10075 [P1 AMG-232 (MDM2i) plus 10d Decitabine] (P)

INCB053914 [P1/2 INCB053914 (PIM inhibitor) multiple heme histologies] (P)

GMI-1271-201 [P1/2 GMI-1271 (E-Selectin Inhibitor) plus 7+3]

M15-656 (P3 Venetoclax+Azacitidine vs Placebo+Aza)

UCDCC#230 (P2 10d Decitabine plus Bortezomib plus Doxil)

AC220-007 (P3 Quizartinib vs salvage chemo for FLT3-ITD+ only)

ARO-013 (P3 Crenolanib plus chemo vs chemo for FLT3+ AML) (P)

GH29914 (P1b/2 Venetoclax plus MDM2i or Venetoclax plus MEKi)

M14-546 [P1 ABBV-075 (BET inhibitor) plus Venetoclax]

PHI-95 (P1 Ipilimumab plus Decitabine)

GMI-1271-201 [P1/2 GMI-1271 (E-Selectin Inhibitor) plus MEC]

INCB053914 [P1/2 INCB053914 (PIM inhibitor) multiple heme histologies] (P)

V9-2017

Age < 60

Age ≥ 60 (fit)

Age ≥ 65 (unfit)

NL A101 (P2 Cellul ar Therapy to Prevent CIN) (P)

ARO-021 (P3 7+3 plus Crenolanib vs Midostaurin for FLT3+) (P)

PHII-134 (P2 Nivolumab Maintenance vs Surveillance)
UCDCCC Acute Lymphoblastic Leukemia Program

New ALL Dx

Age < 60

- UCDCC#246 (P1 Hyper-CVAD plus Carfilzomib, age 18-65, Ph- B-ALL only)
- UCHMC1401 (P2 multiagent chemotherapy, age 18-60)

Age ≥ 60

Concept in development

Relapsed or Refractory ALL

- UCDCC#266 (P2 Blinatumomab plus Ibrutinib, B-ALL only)
- KTE-C19-103 (P1/2 CAR T-cells, B-ALL only)
Summary

• Exciting time for new FDA therapy approvals for AML and ALL
 – 4 new AML approvals in 2017
 – 3 new ALL approvals in 2017
• SOC for AML and ALL is rapidly evolving
• Clinical trials continue to advance new treatments
Questions?